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1. INTRODUCTION

To ascertain whether or not the traditional estimators
conform to a certain intuitive in-built feature, Basu (1971),
Smith (1976) and several others have pleaded for a
plausible predictive format under a fixed-population set-
up. Agrawal and Sthapit (1997) have tapped this format
to arrive at a sequence of efficient ratio-based and
product-based estimators. Agrawal and Panda (1993)
have suggested a suitably weighted combination of the
customary poststratified estimator ( yps, say) and simple
mean ( y , say) which performs better than either of the
estimators yps and y . In this paper, we have invoked a
plausible predictive format under poststratified sampling
and have used yps as an input predictor for the non-
surveyed part of the population in a repetitive manner,
thus obtaining a sequence of poststratification-based
estimators.

Agrawal and Panda (1995) proposed a poststratified
estimator through use of optimum weights. Here, in this
paper, we consider, apart from the optimum situation, a
decomposition of optimum weights into non-optimal sub-
weights with a view to retaining the superiority of the

suggested poststratified estimator over the customary
poststratifeid estimator and simple mean.

2. POSTSTRATIFICATION-BASED
ESTIMATION AND THE RELATED

PERFORMANCE

Consider a population of size N stratified into k
strata, the size of the ith stratum being Ni such that

1

k

i
i

N N
=

=∑ . A simple random sample of size n is drawn

from the population and the sample units are then assigned
to the k strata. Suppose that ni (i = 1, 2, · · · , k) is the
number of units that fall into the ith stratum such that

1=
=∑

k

i i
i

n n, n varying from sample to sample. Assuming

the probability of ni being zero to be small, the usual

unbiased estimator of the population mean Y  in

poststratified sampling is given by
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where ps stands for poststratification, Wi = Ni/N and iy

is the mean of the ni sample units that fall into stratum
i (i = 1, 2, · · · , k). With a view to arriving at a predictive
format under the fixed population set-up, we express
the population total Y as

1 1 1i i

k k k

ij ij i i l
i j s i j s i l s

Y y y n y y
= ∈ = ∈ = ∈

= + = +∑ ∑ ∑ ∑ ∑ ∑ (2.1)

where si denotes the sample of size ni selected from the

ith stratum and is  is its complement, and s  is the

complement of overall sample 
1=

= �
k

i
i

s s . It is clear from

(2.1) that, to estimate the total Y, we have to predict

( )ly l s∈  because the first component on the right hand

side of (2.1) is known. This is tantamount to stating

1

ˆ ˆ
k

i i l
i l s

Y n y y
= ∈

= +∑ ∑ (2.2)

where ˆly  is the implied predictor of ( )ly l s∈ . Invoking

the customary post-stratified estimator psy  as an

intuitive predictor of yl in (2.2), we obtain

1

ˆ ( )
k

i i ps
i

Y n y N n y
=

= + −∑

or say

(1)

1

ˆ
k

i i
ps ps

i

n y N n
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N N=

−= + =∑

In the next step, we utilize (1)
psy  as an intuitive

predictor of yl in (2.2) and this leads to (2)
psy  given by

(2) 2 2(1 )= − +ps psy y yλ λ

where 1
n

N
λ = − . Repetition of this process r times will

culminate in

( ) (1 )= − +r r r
ps psy y yλ λ (2.3)

Having obtained ( )r
psy  given by (2.3), we may, in

fact, extend the scope of r to cover negative integer values
or even all real values without causing any problem.
However, we hereafter consider r � 0. Such an estimator

( )r
psy , which is unbiased for population mean Y , will be

called poststratification-based estimator of order r. It may

be noted that, for ( ) (0)0, ( . ,  )= =r
ps ps psr y i e y y  and, as

( ),→∞ →r
psr y y . Now, noting that

V( )y = 
2S

n

λ

V( )psy = 2 2
2

1

( 1)
(1 )

k

i i i i
i
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W S W S

n n

λ λ
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−+ −∑ ∑

and

Cov( , )psy y = 
1 1

Cov ,
k k

i i
i i

i i

n y
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n= =
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the variance of ( )r
psy  can be expressed as

( )V( )r
psy �  

1
2 ( 2)

r
rS Q

n n

λ λ λ
+

+ −
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2

2
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N
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λ +
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∑  (2.4)

where 2 2

1

k

i i
i

Q S W S
=

= −∑  and S2 and 2
iS  are,

respectively, the population mean square and the mean
square for the ith stratum. The optimum value of r which
minimizes the variance expression given in (2.4) is
obtainable from

*rλ =  
Q

R
(2.5)

where r* denotes the optimum value of r, R = Q + Q1

and
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Q1 = 2

1

1
(1 )

( 1)

k

i i
i

W S
f N =

−
− ∑

Barring some exceptional sampling situations, the
value of Q will be positive. Henceforth, we will assume
Q > 0. It can be easily verified that the use of (2.5) will
reduce (2.4) to

( )
minV ( )r

psy = 
2

( *) 2V( )r
ps

Q
y S

n nR

λ λ= −

which will be smaller that V( )psy  or V( )y . Rewriting

the variance of psy  as

V( )psy  = 
2 2

1 1
1

( )
k

i i
i

W S Q S Q Q
n n n n

λ λ λ λ

=
+ = + −∑

we note that poststratification will be resorted to only

when 
1

Q

Q  > 1, for otherwise, the simple mean will score

over the poststratified estimator psy .

Since determination of r* via (2.5) will not be easy
in view of involvement of the population quantities, we
discuss non-optimal efficient solution in order to ensure

superior performance of ( )r
psy  for values of r other than

r*. The following inequality, obtained from the

comparison of relevant variances of ( )r
psy , psy  and y

given above, will render ( )r
psy  more efficient compared

to either of psy  and y

1 2

1 1

− < <
+ +

rτ τλ
τ τ  where � = 

1

Q

Q
(2.6)

An idea about � can be had from a pilot or past
survey, thus enabling us to decide on �.

For different values of f and �, we have used (2.6)
to prepare Table 1 which displays bounds on r for which

( )r
psy  performs better than y  and psy .

Table 1. Range of r for different � and f values

�\ f .01 .05 .10 .20

0.1 r > 169.62 r > 33.23 r > 16.18 r > 7.64

0.5 r > 40.34 r > 7.9 r > 3.84 r > 1.82

0.9 r > 5.38 r > 1.05 r > .51 r > .24

1 r > 0 r > 0 r > 0 r > 0

2 0 < r < 109.31 0 < r < 21.42 0 < r < 10.43 0 < r < 4.92

5 0 < r < 40.34 0 < r < 7.90 0 < r < 3.85 0 < r < 1.82

10 0 < r < 19.96 0 < r < 3.91 0 < r < 1.90 0 < r < .90

To appreciate mathematically the significance of �

which is a pivotal quantity, we suppose 2 2
i WS S=  which

implies that proportional allocation is optimal in the
Neyman sense. Then, for large Ni (i = 1, 2, · · · , k)

Q = 2 2

1

k

i i
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and Q1 = 
2

2

1

( 1)1
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( 1) ( 1)

k
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f N f N=
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− −∑

and thus �� = f. F where 
2

2
b

W

S
F

S
=  which is a ratio of

’between’ mean squares to ’within’ mean squares and is
obtained from ANOVA table.

3. PERFORMANCE-SENSITIVITY OF THE
PROPOSED ESTIMATOR DUE TO

NON-OPTIMALLY OF r

We would like to determine the loss in efficiency

of ( )r
psy arising from the use of values of r other than

optimum r (i.e. r*) value. To evaluate this loss, we define
a quantity PI which is the proportional inflation in

variance of ( )r
psy  resulting from lack of knowledge of r*

as

PI = 

*

*

( ) ( )

( )

V( ) V( )

V( )

−r r
ps ps

r
ps

y y

y
(3.1)
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After some algebra, PI can be expressed as

PI = 

2*

*1

r r

r
G

λ λ
λ

⎛ ⎞−
⎜ ⎟⎝ ⎠−

where G = 
( ) ( *)

( )

V( ) V( )

V( )

r r
ps ps

r
ps

y y

y

−
, indicating the gain in

efficiency of ( )r
psy (using r*) relative to psy . The

estimator ( )r
psy  will continue to fare better than psy

provided

PI < G �

*
*

*
1 2 1 1

1

− < ⇒ − < <
−

r r
r r

r

λ λ λ λ
λ

 (3.2)

implying thereby that ( )r
psy  will always (irrespective of

choice of r) be more efficient than psy  if

* 1
( 1)

2
< ⇒ <rλ τ . But, for 

* 1
( 1)

2
> ⇒ >rλ τ  we can

manipulate (3.2) to obtain

*
12log(2 1) 2

log

r Q
r

f Q f

λ
λ τ
−< =� (3.3)

Now, turning to the case involving y , we can

express PI = 2 Gδ ⋅ ′  where 

*( )

( *)

V( ) V( )

V( )

r
ps

r
ps

y y
G

y

−
=′  and

*
(1 )= +r rλ δ λ , G′  indicating the gain in efficiency of

( )r
psy  (using r*) relative to y . The estimator r

psy (for a

non-optimal r) will be more efficient than y  provided

PI < 
*r| |<1 2

2

r
r

rG
λδ λ λ τ
λ

⇒ ⇒ < ⇒ >′
−

 (3.4)

Alternatively, ( )r
psy will fare better than y  if

r > 
1 ln 2−
f fτ (3.5)

where � > 1. Combining (3.3) and (3.5), we conclude

that, for ( )r
psy  to perform better than y and psy , we have

(for � > 1)

1 ln 2 2− < <r
f f fτ τ (3.6)

Note also that, if 1
2

< <
−

r

r

λ τ
λ

 (for and r), ( )r
psy

will be superior to y  and psy . It can be verified from

(3.4) that, if � < 1, the values of r that render ( )r
psy  more

efficient than y  are given by

ln(2 )−>r
f

τ τ
(3.7)

Alternatively, taking (1 ) *= + ′r rδ  where ′δ  is the

proportional deviation in r*, we can express

2
2

I 2
1 =  if > 1

Q
P G G

R r

δ δ τ
′⎧ ⎫ ′⎪ ⎪⎛ ⎞= − ′ ′⎜ ⎟⎨ ⎬⎝ ⎠⎪ ⎪⎩ ⎭

Numerical Illustration

Example: The following data have been taken from
Sarndal et al. (1992, p.119)

Stratum i Ni
1=
∑

iN

ij
j

y 2

1=
∑

iN

ij
j

y

1 105 1098.9 21855.05

2 19 3445.9 1822736.83

(i) For n = 30, f = 0.242, � = 0.758, we have

*rλ  = 0.64  � r* = 1.6 and 
*

*
1.775

1
= =

−

r

r

λτ
λ

.

Since � > 1, it is clear from (3.6) that, for ( )r
psy  to

be more efficient than y  and psy , we should have

0 < r < 4.66.

(ii) For n = 15,  f = 0.121, � = 0.897, we have �r* =
.47, r* = 0.5.851 and ��= 0.887.

As �� < 1, we conclude from (3.2) that

( )r
psy (whatever be r) will always be better than psy .

However, for ( )r
psy to perform better than y , we
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get r > 2.61 from (3.7). Thus a choice of r > 2.61

will ensure superiority of ( )r
psy vis-a-vis psy  and

y .

For the above example with n = 30, Table 2 presents
appraisal of the impact of departure from r* in terms of

loss in the efficiency of ( )r
psy as a result of employing

some non-optimum r instead of r*.

Table 2. Loss in efficiency of ( )r
psy as a result of

departure from r*

�� PI

0.05 0.000091

0.10 0.000357

0.15 0.000786

0.20 0.001367

0.25 0.002090

0.30 0.002944

0.35 0.003921

0.40 0.005012

0.45 0.006208

0.50 0.007500

Table 2 clearly reflects that proportional deviations
to the extent of 50% from r* cause only .75% proportional

inflation on ( )V( )r
psy  relative to ( *)V( )r

psy  . In other words,

there is insignificant or no loss in efficiency of ( )r
psy when

we conceive departures from r*, at least to the extent
envisaged in the above table.

4. CONDITIONAL RANDOMIZATION
INFERENCE

Following the work of authors such as Holt and
Smith (1979), Smith (1991), Valliant (1993), Agrawal
and Panda (1995) with regard to the use of conditional
inference in poststratification, we would now like to

examine the performance of ( )cr
psy  in the conditional case

by conditioning the mean square error on actual sample
size from different strata and the same is then expressible
as

( )MSE( | )rc
psy n  = ( ) ( ) 2V( | ) { ( | )}+c cr r

ps psy n Bias y n

= 

22
2

1 1

| (1 )
k k

rc rci
i i i i

i i

n
k K Y

n
ψ λ λ

= =

⎛ ⎞⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∑ ∑ (4.1)

where ,i i i
i i

N n N
W K

N n N
= = −  and 

21 1
i i

i i
S

n N
ψ ⎛ ⎞= −⎜ ⎟⎝ ⎠

The subscript c� in the above discussion indicates
‘conditional’ case. Using the optimal value of rc, say, r*

c
we can find

( )*( )MSE |cr
psy n =  

22

1 1k

k
i

i i
i i

n
K Y

n
ψ

= =

⎛ ⎞ ⎛ ⎞+⎜ ⎟⎝ ⎠ ⎜ ⎟⎝ ⎠
∑ ∑

22

1 1
2

2

1 1

k k
i

i i i i
i i

k k

i i i I
i i

n
K K Y

n

K K Y

ψ

ψ

= =

= =

⎡ ⎤⎛ ⎞⎢ ⎥+ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦−
⎛ ⎞

+ ⎜ ⎟⎝ ⎠

∑ ∑

∑ ∑
 (4.3)

which will be smaller that V( | )psy n  or MSE( | )y n

given by

V( | )psy n = 
2

1

k

i i
i

W ψ
=
∑ (4.4)

MSE( | )y n = 

22

1 1

k k
i

i i
i i

n
K Yi

n
ψ

= =

⎛ ⎞⎛ ⎞ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∑ ∑ (4.5)

5. PERFORMANCE-SENSITIVITY UNDER
CONDITIONAL RANDOMIZATION

INFERENCE

It is of interest to know that potential loss in

efficiency of the proposed post stratified estimator ( )cr
psy

if we use some crλ  other than *r
cλ . For this purpose,

we define, under conditional randomization inference,
a measure PIC similar to PI , i.e.,

PIC = 

( ) ( * )

( * )

MSE( | ) MSE( | )

MSE( | )

−c c

c

r r
ps ps

r
ps

y n y n

y n
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We can, after simplification, express

PIC =  

*

*1

c cr r

cr
c

G
λ λ

λ

⎛ ⎞−⎜ ⎟ ′
−⎝ ⎠

where 

*

*

( )

( )

V( | ) MSE( | )

( | )

c

c

r
ps ps

c
r

ps

y n y n
G

MSE y n

−
=′

In the case of conditional randomization, ( )cr
psy will

continue to fare better than yps provided

PIC < 

* *

*

log(2 1)
1

log1

c c c

c

r r r

c c
r

G r
λ λ λ

λλ

− −⇒ < ⇒ <′
−

(5.1)

Proceeding exactly in the same way as in
Section 3, we can show that, in the conditional case,

( )cr
psy will perform better than y  if

rc > 

*
log(2 )

log

crλ
λ

(5.2)

Combining (5.1) and (5.2), we conclude that, in the

conditional case, ( )cr
psy  fares better than y  and psy if

* *
log(2 ) log(2 1)

log log
−< <

c cr r

cr
λ λ
λ λ

(5.3)

The bounds on rc given by (5.3) may be termed as

‘efficiency bounds’. Taking *(1 )′= +c c cr r δ  where

′
cδ denotes proportional deviation in *

cr , we can express

{ }
*

*

*

( )2

( )

( | ) ( | )
( ) 1

( | )

c
c c

c

r
psr

IC
r

ps

MSE y n MSE y n
P

MSE y n

δλ ′ −
= − ⋅

To illustrate the above results relating to ( )cr
psy under

the framework of conditional randomization inference,
we consider the following theoretical numerical example

due to Holt and Smith (1979) which shows that there
exists a sequence of non-optimal efficient estimators

(based on use of some rc other than *
cr ) ensuring superior

performance of ( )cr
psy compared to simple mean and

traditional poststratified estimator.

Example: A population which is postsratified into two
strata has the following characteristics.

Y = 0, S2 = 2, N1/N = N2/N = 
1

2

2
1S = 2

2 1S = ,  1 21, 1Y Y= − = and n  = 20

However, instead of ignoring finite population
correction factors as assumed by Holt and Smith (1979),
we retain them by considering N1 = N2 = 100 and

2 2
1 2 2S S= =  in respect of the two strata.

From the standpoint of conditional randomization
inference, we need, because of reasons of symmetry, to
discuss the configurations from n1 = 1, n2 = 19 to n1 = 9,

n2 = 11. We have excluded the case n1 = n2 = 10 as *r
cλ

is not defined in view of Ki becoming zero when

( 1, 2)i in N
i

n N
= = .

To appraise the performance of ( )r
psy  under

conditional randomization inference, we have prepared

Table 3 which reflects the performance of ( )cr
psy  vis-a-

vis psy  and y  when *
cr  is employed. More importantly,

we display possible values of rc (efficiency bounds of

rc) for which ( )cr
psy  performs better that psy  and y .
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Table 3. A Comparison of ( ) ,cr
ps psy y  and y  under the given

configurations of sample sizes

n1
*
cr MSE Efficiency V ( | )psy n MSE

*
( | )cr

psy n bounds ( | )y n

of rc

1 4.05 0.3683 0 < r < 11.24 0.5163 0.8919

2 2.35 0.2288 0 < r < 5.47 0.2678 0.7236

3 1.71 0.1702 0 < r < 3.81 0.1861 0.5751

4 1.39 0.1386 0 < r < 3.02 0.1462 0.4464

5 1.20 0.1194 0 < r < 2.57 0.1233 0.3375

6 1.08 0.1070 0 < r < 2.29 0.1090 0.2484

7 1.01 0.0985 0 < r < 2.14 0.0999 0.1785

8 0.95 0.0938 0< r < 2.00 0.0942 0.1296

9 0.92 0.0909 0 < r < 1.94 0.0910 0.0999

Table 4. Loss of efficiency of ( )cr
psy , as a result of

departures from *
cr

n1 rc PIC

1 5.0580 0.014500

2 2.9340 0.007800

3 2.1440 0.004600

4 1.7386 0.002900

5 1.4988 0.001770

6 1.3470 0.001000

7 1.2630 0.000560

8 1.1869 0.000230

9 1.1525 0.000057

Table 4 underscores the fact that, for above example,
the values of rc that embody deviations of 25% from r*

c

cause very little inflation in minimum conditional mean

square error of ( )cr
psy as indicated by column PIC. In other

words, there is insignificant loss in efficiency of ( )cr
psy

when we conceive departures from *
cr .
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