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SUMMARY

Employing the customary predictiveformat, asalluded to by Basu (1971), Smith (1976) and several
others, for estimation of the population total or the population mean under afixed population set-up, we
have generated a sequence of efficient unbiased poststratification-based estimators. The proposed
sequence of estimators is found, under optimal and non-optimal conditions, to be more efficient than
the customary poststratified estimator and the usual simple mean. The performance of the proposed
sequence of estimators has been examined from the point of view of conditional randomization inference.
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1. INTRODUCTION

To ascertain whether or not thetraditional estimators
conformto acertainintuitivein-built feature, Basu (1971),
Smith (1976) and several others have pleaded for a
plausible predictive format under afixed-popul ation set-
up. Agrawal and Sthapit (1997) have tapped this format
to arrive at a sequence of efficient ratio-based and
product-based estimators. Agrawa and Panda (1993)
have suggested a suitably weighted combination of the
customary poststratified estimator ( yys, Sy) and smple
mean (Y, say) which performs better than either of the
estimators y,s and y . In this paper, we have invoked a
plausible predictiveformat under poststratified sampling
and have used Yy as an input predictor for the non-
surveyed part of the population in a repetitive manner,
thus obtaining a sequence of poststratification-based
estimators.

Agrawal and Panda (1995) proposed apoststratified
estimator through use of optimum weights. Here, in this
paper, we consider, apart from the optimum sSituation, a
decomposition of optimum weightsinto non-optimal sub-
weights with a view to retaining the superiority of the
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suggested poststratified estimator over the customary
poststratifeid estimator and simple mean.

2. POSTSTRATIFICATION-BASED
ESTIMATION AND THE RELATED
PERFORMANCE

Consider a population of size N stratified into k
strata, the size of the i stratum being N; such that

k
2 N; = N . A smple random sample of size nisdrawn
i=1

from the popul ation and the sample unitsarethen assigned
to the k strata. Supposethat n (i =1, 2, - - -, K) isthe
number of units that fall into the i™ stratum such that

k
2 n, = n, n, varying from sample to sample. Assuming
i=1

the probability of n; being zero to be small, the usual
unbiased estimator of the population mean Y in

poststratified sampling isgiven by

k
Vos = 2, WY,
i=1
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where ps stands for poststratification, W, = N;/N and Y
is the mean of the n; sample units that fall into stratum
i(i=1,2, ---,K). Withaview to arriving at apredictive
format under the fixed population set-up, we express
the population total Y as

k k k
Y=Y YitY X%=XnVNt XV (21)
i=1 jes i=1 jes i=1 les
where s denotes the sample of size n; selected from the
" stratum and § isits complement, and S is the

k

complement of overall sample s=[ 5 . Itisclear from
i=1

(2.1) that, to estimate the total Y, we have to predict

y; (I € 5) because the first component on the right hand

side of (2.1) isknown. Thisis tantamount to stating
ok
=2n%+ 20 2.2)
i=1 les

where ¥, istheimplied predictor of y; (I €S) . Invoking
the customary post-stratified estimator Yps as an
intuitive predictor of y; in (2.2), we obtain

R k
zzqyl +(N_n)yps
i=1

or say

k
y=Yyh y o= Y5
i=1

In the next step, we utilize y§) as an intuitive

predictor of y; in (2.2) and this leads to y(2) given by
Yé? = (1_/12)y+)~237p5

where ) :1_% . Repetition of thisprocessr timeswill

culminate in

Vo =@ A" )Y+ A Y (2.3)

Having obtained y. given by (2.3), we may, in
fact, extend the scope of r to cover negativeinteger values

or even al rea values without causing any problem.
However, we hereafter consider r > 0. Such an estimator

ylgg) , which isunbiased for population mean Y , will be
called poststratification-based estimator of order r. It may
be noted that, for r=0, ¥ (i.e )=y, and, as

I — oo, ygs) — 'y . Now, noting that

V) =48

V(Tps) = R DAy

ZWS 2(1 W)S?

and

KNy <.
Cov(y, ¥ps) = COV| =0, WY,

i=1 i=1
). k
- SYWS
niz;

the variance of Y/f)rs) can be expressed as

/1”1
+

VL) o —s Q" -2)

/er +1

{ . 2(1 W)S} 2.4)

k
where Q=5°-YWS* and & and S are,

respectively, the p(l)blulation mean sguare and the mean
squarefor the i stratum. The optimum value of r which
minimizes the variance expression given in (2.4) is
obtainable from

r* _ 9
AT = = (2.5)

where r* denotes the optimum valueof r, R=Q + Q,
and
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1: f(N- 1)2(_ |)S

Barring some exceptional sampling situations, the
value of Q will be positive. Henceforth, we will assume
Q> 0. It can be easily verified that the use of (2.5) will
reduce (2.4) to

2

My = vE)=2g2
mln(y ) (y )= R

which will be smaller that V() or V(Y) . Rewriting

the variance of Yps as

k
V() = SIS +EQ =284 2 Q- Q)
i=1

we note that poststratification will be resorted to only
Q
when Q > 1, for otherwise, the ssimple mean will score

over the poststratified estimator Y.

Since determination of r” via (2.5) will not be easy
in view of involvement of the population quantities, we
discuss non-optimal efficient solution in order to ensure

superior performance of (i) for values of r other than

. The following inequality, obtained from the

comparison of relevant variances of ygs), Yps and 'y

given above, will render y{) more efficient compared

to either of Y,s and y

— <A <— = =
741 741 wheret Q (2.6)

An idea about T can be had from a pilot or past
survey, thus enabling us to decide on 7.

For different values of f and t, we have used (2.6)
to prepare Table 1 which displays boundson r for which

ygs) performs better than ¥ and Yps.

Table 1. Range of r for different T and f values

o\ f .01 .05 10 .20
0.1 | r>169.62 r >33.23 r>16.18 r>764
0.5 r>40.34 r>79 r>384 r>182
0.9 r>538 r>105 r>.51 r>.24
r>0 r>0 r>0 r>0
0<r<10931)0<r<2142|0<r<1043 [ 0<r<492
0<r<4034| 0<r<790 [ 0<r<385 |0<r<182
10 |0<r<1996| 0<r<391 | 0<r<190 | 0<r<.90

To appreciate mathematically the significance of t
whichisapivotal quantity, we suppose S? = 52, which
implies that proportional alocation is optimal in the
Neyman sense. Then, for largeN, (i=1,2, - -+, K)

k k
Q=S"-YWS = YW -Y)?
i=1 i=1
-2 k-1
= So N

K
where §2 =i2 N; (Y, = Y)?

. (k-DSy
and Q= 1Nz 1)2( WS = F(N=1)
s
and thus t = f. F where F =—- which is a ratio of

2
"between’ mean squaresto 'within’ mean squaresand is
obtained from ANOVA table.

3. PERFORMANCE-SENSITIVITY OF THE
PROPOSED ESTIMATOR DUE TO
NON-OPTIMALLY OFr

We would like to determine the loss in efficiency
of yé;) arising from the use of values of r other than

optimumr (i.e. r*) value. To evaluatethisloss, wedefine
a quantity P, which is the proportional inflation in

variance of y(r) resulting from lack of knowledge of r’

as

V(y(”) V(y )
V(y )

(3.1)
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After some agebra, P, can be expressed as

2
AT AT
IDI ( r* ) G
1-2
V) -VIL))

V(IR)
efficiency of y{ (using r’) relative to Vps. The

where G = , indicating the gain in

estimator Y will continue to fare better than Vs
provided

*

r r

A
P<G= :
1-A'

<1=22" -1<A" <1 (32)

implying thereby that () will aways (irrespective of

choice of r) be more efficient than Y, if

1 *
r <E(:>T<1).But, for ' >%(:>T>1) we can

manipulate (3.2) to obtain

Jog2a" - 2 2
logA fQ fr

(3.3)

Now, turning to the case involving y, we can

\
express P, = §%.G’ where G’ = V) -V, ) and

V(y(r*))
G’ indicating the gain in efficiency of

=1+ 8)AT
ygs) (using ') relative to y . The estimator Yps (for a

non-optimal r) will be more efficient than y provided

r

P<G=|0kl= A < 2/1r* =7> Z (3.4)
[ 22"

Alternatively, ¥ will fare better than y if

1 In2

r> T (3.5

where T > 1. Combining (3.3) and (3.5), we conclude

that, for y{) to perform better than y and ¥,s, we have
(fort>1)

1 In2 2

ot e (36)

r

T <7<l (forandr), y&)

Note also that, if 5

will be superior to y and Y. It can be verified from

(3.4) that, if T < 1, the values of r that render 3785 ) more

efficient than y are given by

_7=In(20)

: (3.7)

Alternatively, taking r = (1+ 6”)r * where §” isthe
proportional deviation in r’, we can express

& 2 .2
H:{(Q) _} =2 Gifr>1
R r2

Numerical Illustration

Example: The following data have been taken from
Sarndd et al. (1992, p.119)

N; N;
2
Stratum i N; 2 Yij 2 Yij
j=1 j=1
1 105 1098.9 21855.05
2 19 3445.9 1822736.83

(i) For n =30, f = 0.242, A = 0.758, we have

r*

A =064 =1 =16and T=—— =1775.

Since t > 1, it is clear from (3.6) that, for ¥ to

bemoreefficient than y and Vps,weshould have
0<r <4.66.

(i) Forn=15, f=0.121, A = 0.897, we have " =
47,1 =05.851 and t = 0.887.

As 1t < 1, we conclude from (3.2) that

v4 (whatever ber) will alwaysbe better than Vs

However, for y(r)to perform better than ¥, we
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get r > 2.61 from (3.7). Thus achoice of r > 2.61

will ensure superiority of y{) vis-avis ¥ps and

Y.

For the above examplewith n= 30, Table 2 presents
appraisal of the impact of departure fromr” in terms of

loss in the efficiency of Y as a result of employing
some non-optimum r instead of 1.

Table 2. Loss in efficiency of )_/gs)asareﬂjlt of

departure from r’

& P,
0.05 0.000091
0.10 0.000357
0.15 0.000786
0.20 0.001367
0.25 0.002090
0.30 0.002944
0.35 0.003921
0.40 0.005012
0.45 0.006208
0.50 0.007500

Table 2 clearly reflectsthat proportional deviations
to theextent of 50%fromr” causeonly .75% proportional

inflation on V(y(r)) relatlvetoV(y )) In other words,

thereisinsignificant or nolossin efficiency of y(r) when

we conceive departures from r’, at least to the extent

envisaged in the above table.

4. CONDITIONAL RANDOMIZATION
INFERENCE

Following the work of authors such as Holt and
Smith (1979), Smith (1991), Valliant (1993), Agrawal
and Panda (1995) with regard to the use of conditiona
inference in poststratification, we would now like to

examinethe performanceof y(¢) intheconditional case

by conditioning the mean sgquare error on actual sample
sizefrom different strataand the sameisthen expressible
as

MSE(Y( |n) = V(y5¢) |n) +{Bias(yh¢’ |n)}

k 2 k
2 ( A*Ck) |(1—MC)2[2KMJ (4.1)
i=1 i=1

. . . 1 1
where W zﬁ,Ki NN g =[__W]SZ
N n N n i

The subscript ¢’ in the above discussion indicates
‘conditional’ case. Using the optimal value of r, say, rz
we can find

MSE(ygSé)ln) Eklllf( )2 (2 KY)

=1 i=1K

e (]|

ZK,ZI//, +£i KiY,

which will be smaller that V(y,s|n) or MSE(yln)
given by

k
V(s I) = ;V\/izl//i (4.4)

i=1

k n 2 k _ 2
MSE(Y [n) = 2(;') Vi +£2 KMJ (4.5)
i=1

5. PERFORMANCE-SENSITIVITY UNDER
CONDITIONAL RANDOMIZATION
INFERENCE

It is of interest to know that potential loss in
efficiency of the proposed post stratified estimator yl(;g)

if we use some A'c other than ,1{; . For this purpose,

we define, under conditional randomization inference,
ameasure P, similar to P,

MSE(y('C)|n) MSE(y s ©|n)
Ic~ M SE(y's ' In)
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We can, after smplification, express

x%—A@]
p.= | 27 g
Ic Ll—/l{; ¢

V (Vs [N) - MSE(y"C) |n)
MSE(y"C) In)

where G/ =

Inthe case of conditional randomization, (e will

continue to fare better than Yps provided

log(2A"¢ 1)
logA

*
Ale - ple
*

P < G =
1- )

<l=r.<

(5.1)

Proceeding exactly in the same way as in
Section 3, we can show that, in the conditiona case,

y(rc)will perform better than y if

r*
S log(24°¢)

c logA (52)

Combining (5.1) and (5.2), we conclude that, in the

conditional case, y(rC) fares better than y and Ypsif

log(2A )
logA

log(24%¢ 1)

<I. < log /1 (5.3)

The bounds on r.. given by (5.3) may be termed as
‘efficiency bounds'. Taking r, =r. (1+8.") Where

S C’ denotes proportional deviationin rg , We can express

- {( v _1}2 MSE(y ) - MSE(Y{% )
MSE(Y% )

Toillustratethe aboveresultsrelating to yl(org) under

the framework of conditional randomization inference,
we consider thefollowing theoretical numerical example

due to Holt and Smith (1979) which shows that there
exists a sequence of non-optimal efficient estimators

(based on use of somer . other than rg ) ensuring superior

performance of yl(org) compared to simple mean and

traditiona poststratified estimator.

Example: A population which is postsratified into two
strata has the following characteristics.

_ 1
Y =0,8=2,N/N=N/N= -

N

$2=S=1, ¥;,=-1Y,=1andn =20

However, instead of ignoring finite population
correction factors as assumed by Holt and Smith (1979),
we retain them by considering N, = N, = 100 and

From the standpoint of conditional randomization
inference, we need, because of reasons of symmetry, to
discussthe configurationsfromn, =1,n,=19ton, =9,

= 2 in respect of the two strata.

n, = 11. We have excluded thecase n, =n, =10 as A{"

is not defined in view of K; becoming zero when

L
n N (=12,

To appraise the performance of ygs) under

conditional randomization inference, we have prepared
Table 3 which reflects the performance of yl(org) visa
Vis Yps and Y when rg isemployed. Moreimportantly,
we display possible values of r (efficiency bounds of

r.) for which y(rc) performs better that Y,s and y .
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Table 3. A Comparison of ygg),yps and Y under thegiven

configurations of sample sizes

n| g MSE Efficiency |V (YpsIn)| MSE

(y[gfS | n) bounds (Y|n)

of re

11405 | 03683 | O<r<11.24| 05163 | 0.8919
2 1235 02288 | O<r<547| 0.2678 | 0.7236
3 1171 01702 | O<r<381| 0.1861 | 0.5751
4 (139 ] 0.1386 | O<r<3.02| 0.1462 | 0.4464
51120 | 01194 | O<r<257| 0.1233 | 0.3375
6 |11.08 [ 0.1070 | O<r<229| 0.1090 | 0.2484
7 11.01 | 0.098 | O<r<214| 0.0999 |0.1785
8 1095 | 0.0938 | O<r<200| 0.0942 |0.1296
9 10.92 | 0.0909 | O<r<194( 0.0910 | 0.0999

Table 4. Loss of efficiency of ygg) , as aresult of

departures from r_

r P

>

1 c IC
1 5.0580 0.014500
2 2.9340 0.007800
3 2.1440 0.004600
4 1.7386 0.002900
5 1.4988 0.001770
6 1.3470 0.001000
7 1.2630 0.000560
8 1.1869 0.000230
9 1.1525 0.000057

Table4 underscoresthefact that, for above example,
the values of r that embody deviations of 25% from re
cause very little inflation in minimum conditional mean

squareerror of ygg) asindicated by column P,. In other

words, there isinsignificant loss in efficiency of ygg)
when we conceive departures from rg .
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